Journal of Organometallic Chemistry, 303 (1986) 337-341 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

MNDO-UHF STUDY OF THE MOLECULAR AND ELECTRONIC STRUCTURES OF CATION RADICALS DERIVED FROM TETRAMETHYLGERMANE, HEXAMETHYLDIGERMANE, AND OTHER RELATED ORGANOGERMANES

CHRISTOPHER GLIDEWELL

Chemistry Department, University of St Andrews, St Andrews, Fife KY16 9ST (Great Britain) (Received October 17th, 1985)

Summary

Calculations have been made, using the MNDO-UHF SCF method, of molecular and electronic structures of a range of neutral organogermanes and of the corresponding cation radicals. The cation radical $(GeMe_4)^+$ is calculated to have D_{2d} symmetry as an isolated ion, while $(Ge_2Me_6)^+$ is a σ radical in which the SOMO is strongly localised in the GeGe bond. The cation radicals $(Me_3Ge)_2O^+$ and $(Me_3Ge)_2NH^+$ are $n\pi$ radicals, while $(Me_3Ge)_2CH_2^+$ dissociates to Me_3Ge^+ and Me_3GeCH_2 ; which is planar at the radical centre. Both $(Me_3Ge)_2O_2^+$ and $(Me_3Ge)_2S_2^+$ have *trans*-planar skeletons.

Introduction

The γ -irradiation of tetramethylgermane in dilute frozen solutions in CFCl₃ yields [1] the (GeMe₄)⁺ cation radical, whose electron spin resonance spectrum has been interpreted in terms of a C_{2v} structure containing two distinct types of methyl group which are freely rotating about the Ge-C bonds. The use of an adamantane matrix, on the other hand, yields [2] the neutral radical GeMe₃ after γ -irradiation: this product [2] had an electron spin resonance spectrum virtually identical with that of GeMe₃ radicals produced [3] by reaction of Me₃GeH with Me₃CO. Similar γ -irradiation of hexamethyldigermane in dilute frozen solutions in CFCl₃ gives the (Ge₂Me₆)⁺ cation radical [4], which is characterised by hyperfine coupling of the unpaired electron to eighteen equivalent hydrogens, again requiring free rotation of the methyl groups about the Ge-C bonds. It was suggested [4] that (Ge₂Me₆)⁺ is a σ radical in which the unpaired electron is strongly localised in a σ -bonding Ge-Ge orbital.

In the present paper, we report the results of MNDO calculations, which provide information on the molecular and electronic structures, on some permethylated germanium radicals derived from $GeMe_4$ and Ge_2Me_6 , as well as those from Me_3GeH and Me_3GeCMe_3 , $(Me_3Ge)_2X$ (X = O, NH or CH₂), and $(Me_3Ge)_2O_2$ and $(Me_3Ge)_2S_2$.

Calculations

All calculations of molecular geometry and energy were made using the MNDO method [5] incorporated in the MOPAC system [6]: the atomic parameters used were those stored internally in the MOPAC system. UHF wave functions were used for all open-shell species, and all geometric variables were independently optimised unless it is stated otherwise.

Results and discussion

Radicals from $GeMe_4$ and Ge_2Me_6

The neutral molecules GeMe_4 and Ge_2Me_6 optimised to structure having exact T_d and D_{3d} skeletal symmetry (Table 1): the molecular energies were essentially independent of detailed hydrogen conformation, indicative of free rotation of the methyl groups about their GeC bonds. The calculated GeC distance is 1.941 Å in each molecule, comparable with the value of 1.945 Å observed [7]: the calculated GeGe distance in Ge₂Me₆, 2.564 Å, is somewhat longer than the value of 2.404 Å observed [8] in the unsubstituted Ge₂H₆.

In the neutral GeMe₄, the HOMO is of T_2 type, concentrated primarily in the GeC bonds. Hence vertical ionisation will yield a Jahn-Teller sensitive cation, which is expected to undergo a reduction in skeletal symmetry, along a skeletal vibration of either e or t_2 type. As in previous studies of organometallic radicals [9,10], two skeletal geometries, having C_{3v} and C_{2v} symmetry, were considered. The C_{3v} isomer was calculated to have marginally the lower energy, but this symmetry does not represent a genuine minimum, nor does the resulting electronic structure possess C_{3v} symmetry. Constrained C_{2v} optimisations always converged to exact D_{2d} symmetry, corresponding to a Jahn-Teller distortion from T_d along one component of the e skeletal deformation: when the potential surface for (GeMe₄)⁺ was scanned along one of the angular coordinates, for values of < (CGeC) from 110 to 180°, D_{2d} symmetry applies to the free ion, and it was suggested in the original report of the formation of (GeMe)₄⁺ in frozen solution [1] that the observed C_{2v} symmetry resulted from vibronic perturbations induced by the matrix.

The GeMe₃ radical, of C_{3v} symmetry, has a pyramidal skeleton, like its silicon [11] and tin [12,13] analogues, although unlike CMe₃; which is effectively planar [14,15]. The angle between the GeC bonds and the threefold symmetry axis is calculated, for the isolated radical, to be 106.1°, slightly smaller than the value, 113°, deduced [2] for the radical in an adamantane matrix. A scan of the (GeMe₄)⁺ potential surface along one of the GeC bonds showed that dissociation is to Me₃Ge⁺ and CH₃; rather than to Me₃Ge⁺ and CH₃⁺. Consequently formation of Me₃Ge⁺ from the γ -irradiation of GeMe₄ [2] probably requires a subsequent charge exchange reaction of the Me₃Ge⁺ cation, either with a further molecular of GeMe₄ or with the matrix material.

The HOMO of Ge_2Me_6 is of A_{1g} (σ -bonding) type, localised primarily in the

ΔH_t^{\oplus} (kJ mol⁻¹) d(GeC) (Å) d(GeGe) (Å) \angle (CGeC) (°) \angle (CGeGe) (°) Molecule Skeletal point-group - 99.9 2.564 Ge, Me D_{3d} 1.941 107.7 111.2 D_{3d} 99.3 $(Ge_{7}Me_{6})^{+}$ +682.51.917 3.414 117.4 -132.3 1.941 109.5 GeMe₄ T_d (GeMe₄)⁴ D_{2d} +888.4 $1.992(\times 4)$ $125.7(\times 2)$ C_{3v} +885.91.911(×1) 113.6(×3) $2.027(\times 3)$ $105.0(\times 3)$ GeMe₃ C_{3v} -15.71.928 112.6 D_{3h} +680.61.898 120.0 $(GeMe_3)^+$

TABLE 1

^a Skeletal point group imposed, 40 geometric variables optimised: not a genuine minimum (see text).

GeGe bond, and containing contributions (from both 4s and 4p orbitals ($|C_s| = 0.214$; $|C_p| = 0.583$). In consequence, vertical ionisation gives a cation insensitive to Jahn-Teller distortion, and the optimised structure of the cation radical (Ge₂Me₆)⁺ retains the D_{3d} symmetry of its neutral parent. As with the tin analogue [10,16], conversion of Ge₂Me₆ to (Ge₂Me₆)⁺ is accompanied by a lengthening of the central GeGe bond and a flattening of the individual GeMe₃ fragments. The SOMO in (Ge₂Me₆)⁺ is again of A_{1g} type, strongly localised in the GeGe bond, ($|C_s| = 0.182$; $|C_p| = 0.609$), so that the two GeMe₃ fragments are held together by only a one-electron bond.

Radicals from Me₃GeH and Me₃GeBu^t

The neutral molecule Me_3GeCMe_3 has C_{3v} symmetry, with a unique GeC bond distance of 2.008 Å: the HOMO is of A_1 (σ -bonding) type, localised primarily in the central GeC bond. The resulting radical cation is of some interest, as it provides a bridge between the σ -radical (Ge₂Me₆)⁺ described above, and (C₂Me₆)⁺ [17,18] which is stabilised only by cage effects [9,19]. Ionisation of Me₃GeBu^t is calculated to give smooth dissociation to the two planar species Me₃Ge⁺ and CMe₃; likewise Me₃GeH is calculated to give upon ionisation Me₃Ge⁺ and hydrogen atoms.

Radicals from $(Me_3Ge)_2 X (X = O, NH, CH_2)$

Within the (s, p) basis set employed in the MNDO method the structure of $(Me_3Ge)_2O$ is calculated to be linear at oxygen: the experimental value of \angle (GeOGe), from electron diffraction measurements is 141° [20], although the detailed dynamics of the skeletal vibrations have not been worked out. In common with such molecules as $(Me_3Si)_2O$ and $(H_2Si)_2O$, which MNDO calculates to be linear at oxygen, $(Me_3Ge)_2O$ may well be quasi-linear [21] with only a very small barrier at the linear configuration. Such molecules pose a very severe test of theoretical calculations, and $(H_3Si)_2O$, for example, requires the use of *d*-functions upon oxygen before the form of the experimental [22] bending potential functions can be reproduced [23]: the use of *d*-functions on silicon alone is insufficient [23]. Both $(Me_3Ge)_2NH$ and $(Me_3Ge)_2CH_2$ have calculated structures (Table 2) which are very similar to those of the silicon analogues [24,25]. The planar nitrogen in $(Me_3Ge)_2NH$ is parallelled by planar nitrogen in both $(H_3Ge)_3N$ [26] and in $(Ph_3Si)_2NH$ [27].

TABLE 2

OPTIMISED PROPERTIES OF $(Me_3Ge)_2 X \text{ AND } (Me_3Ge)_2 X ^+$	(X = 0)), NH, (CH ₂)
--	---------	----------	-------------------

	X = 0	X = NH	$X = CH_2$
Neutral molecules			
$\Delta H_{\rm f}^{\oplus}$ (kJ mol ⁻¹)	- 493.7	- 246.8	- 217.0
d(GeX) (Å)	1.755 "	1.855	1.940
∠(GeXGe) (°)	180.0 ^b	138.5 °	128.5
НОМО	$O(p\pi)$	$N(p\pi)$	$\sigma(Ge-C-Ge)$
Cation radicals			
$\Delta H_{\rm f}^{\oplus}$ (kJ mol ⁻¹)	+ 424.5	+ 545.2	d
d(GeX) (Å)	1.900	1.992	
∠(GeXGe) (°)	180.0	139.9	

^a Experimental value, 1.767 Å (ref. 20). ^b See text. ^c Bonds to N coplanar. ^d Dissociates to Me_3GeCH_2 ^c and Me_3Ge^+ (see text).

The forms of the HOMO in these three molecules provide the key to their subsequent behaviour upon ionisation. In $(Me_3Ge)_2O$ and $(Me_3Ge)_2NH$ the HOMO is a oxygen or nitrogen $2p_{\pi}$ orbital, normal to the GeXGe fragment: consequently, ionisation to the corresponding cation radicals occurs with very little structural change. However in $(Me_3Ge)_2CH_2$, where there is no lone pair, the HOMO of σ type is concentrated in the two GeC bonds, and upon ionisation the cation dissociates smoothly to Me_3GeCH_2 and Me_3Ge^+ . The radical Me_3GeCH_2 is calculated to be planar at the radical centre, with the SOMO a carbon $2p_{\pi}$ orbital normal to the GeCH₂ plane. The unique GeC distance is 1.885 Å, the threefold GeC distance is 1.938 Å, and the threefold angle between the two type of bond is 109.4°.

Radicals from $(Me_3Ge)_2O_2$ and $(Me_3Ge)_2S_2$

Neutral $(Me_3Ge)_2O_2$ optimises to a structure whose skeletal symmetry is C_{2h} , i.e. trans-planar with a dihedral angle σ (GeOOGe) of 180°. In the related peroxides $(Me_3C)_2O_2$ and $(Me_3Si)_2O_2$ the average structures, measured by electron diffraction, have apparent dihedral angles of 166 and 144° respectively [28]. In view of the dihedral angle of 180° found [29] in $(Ph_2C)_2O_2$, it is possible that for all these permethyl peroxides, the energy minimum occurs at the trans-planar, $\delta = 180^\circ$, conformation. In $(Me_3Ge)_2O_2$, for which the GeC, GeO, and OO distances are calculated to be 1.937, 1.865, and 1.274 Å respectively, the HOMO is the out of phase combination of oxygen $2p_{\pi}$ orbitals, of B_g symmetry. Ionisation to $(Me_3Ge)_2O_2^+$ does not follow the precepts of Koopman's theorem, and the SOMO in the radical cation is spread over the whole of the GeOOGe fragment, where it is anti-bonding for both GeO and OO. In analogous $(Me_3Ge)_2S_2^+$, also of C_{2h} skeletal symmetry, the SOMO is of B_g type strongly localised in the SS fragment. The skeletal geometry and the SOMO calculated for $(Me_3Ge)_2S_2^+$ are both typical of those found in cation radicals of type $R_2S_2^+$ [30–32].

References

- 1 B.W. Walther and F. Williams, J. Chem. Soc., Chem. Commun., (1982) 270.
- 2 R.V. Lloyd and M.T. Rogers, J. Am. Chem. Soc., 95 (1973) 2459.
- 3 H. Sakurai, K. Mochida, and M. Kira, J. Am. Chem. Soc., 97 (1975) 929.

- 4 J.T. Wang and F. Williams, J. Chem. Soc., Chem. Commun., (1981) 666.
- 5 M.J.S. Dewar and W. Thiel, J. Am. Chem. Soc., 99 (1977) 4899.
- 6 J.J.P. Stewart, QCPE No. 455.
- 7 J.L. Hencher and F.J. Mustoe, Canad. J. Chem., 53 (1975) 3542.
- 8 B. Beagley and J.J. Monaghan, Trans. Farad. Soc., 66 (1970) 2745.
- 9 C. Glidewell, J. Chem. Res., (1983), (S) 22.
- 10 C. Glidewell, J. Organomet. Chem., in press.
- 11 P.J. Krusic and J.K. Kochi, J. Am. Chem. Soc., 91 (1969) 3938.
- 12 S.A. Fieldhouse, A.R. Lyons, H.C. Starkie, and M.C.R. Symons, J. Chem. Soc., Dalton Trans., (1974) 1966.
- 13 M.J.S. Dewar, G.L. Grady, D.R. Kühn, and K.M. Merz, J. Am. Chem. Soc., 106 (1984) 6773.
- 14 D. Griller, K.U. Ingold, P.J. Krusic, and H. Fischer, J. Am. Chem. Soc., 100 (1978) 6750.
- 15 M.N. Paddon-Row and K.N. Houk, J. Am. Chem. Soc., 103 (1981) 5046.
- 16 M.C.R. Symons, J. Chem. Soc., Chem. Commun., (1981) 1251.
- 17 M.C.R. Symons and I.G. Smith, J. Chem. Res. (1979), (S) 382.
- 18 M.C.R. Symons, Chem. Phys. Lett., 69 (1980) 198.
- 19 C. Glidewell, J. Chem. Soc., Perkin Trans. II, (1984) 1175.
- 20 L.V. Vilkov and N.A. Tarasenko, Zhur, Strukt. Khim., 10 (1969) 1102.
- 21 W.R. Thorson and I. Nakagawa, J. Chem. Phys., 33 (1960) 994.
- 22 J.R. Durig, M.J. Flanagan, and V.F. Kalasinsky, J. Chem. Phys., 66 (1977) 2775.
- 23 C.A. Ernst, A.L. Allred, M.A. Ratner, M.D. Newton, G.V. Gibbs, J.W. Moscowitz, and S. Topiol, Chem. Phys. Letts., 81 (1981) 424.
- 24 C. Glidewell and D.C. Liles, J. Organomet. Chem., 234 (1982) 15.
- 25 A.G. Robiette, G.M. Sheldrick, W.S. Sheldrick, B. Beagley, D.W.J. Cruickshank, J.J. Monaghan, B.J. Aylett, and I.A. Ellis, J. Chem. Soc., Chem. Commun., (1968) 909.
- 26 C. Glidewell, D.W.H. Rankin, and A.G. Robiette, J. Chem. Soc. (A) (1970) 2935.
- 27 C. Glidewell and H.D. Holden, Acta Cryst., B37 (1981) 1754.
- 28 K. Käss, H. Oberhammer, D. Brandes, and A. Blaschette, J. Mol. Struct., 40 (1977) 65.
- 29 C. Glidewell, D.C. Liles, D.J. Walton, and G.M. Sheldrick, Acta Cryst., B35 (1979) 500.
- 30 T. Gillbro, Chem. Phys., 4 (1974) 476.
- 31 H. Chandra, D.N. Ramakrishna Rao, and M.C.R. Symons, J. Chem. Res., (1983), (S) 68.
- 32 C. Glidewell, J. Chem. Soc., Perkin Trans. II, (1984) 407.